Topic Description

Multi-output learning (MoL) aims to predict multiple outputs for an input, where the output values are characterized by diverse data types, such as binary, nominal, ordinal and real-valued variables. Such learning tasks arise in a variety of real-world applications, ranging from document classification, computer emulation, sensor network analysis, concept-based information retrieval, human action/causal induction, to video analysis, image annotation/retrieval, gene function prediction and brain science. Due to its popularity in applications, multi-output learning has also been widely explored in machine learning community, such as multi-label/multi-class classification, multi-target regression, hierarchical classification with class taxonomies, label sequence learning, sequence alignment learning, supervised grammar learning, and so on.

The theoretical properties of existing approaches for multi-output data are still not well understood. This triggers practitioners to develop novel methodologies and theories to deeply understand multi-output learning tasks. Moreover, the emerging trends of ultrahigh input and output dimensionality, and the complexly structured objects, lead to formidable challenges for multi-output learning. Therefore, it is imperative to propose practical mechanisms and efficient optimization algorithms for large-scale applications. Deep learning has gained much popularity in today’s research, and has been developed in recent years to deal with multi-label and multi-class classification problems. However, it remains non-trivial for practitioners to design novel deep neural networks that are appropriate for more comprehensive multi-output learning domains.

This workshop aims to publish state-of-the-art scientific works along this direction. We welcome all the original submissions with significant novel results, focusing on modelling, algorithm, theory, and real-world applications in the field of multi-output learning.

Topics of Interest

Interested topics include, but are not limited to:

Submission Guidelines

Workshop submissions and camera ready versions will be handled by Microsoft CMT. Click for submission.

Papers should be formatted according to the IJCAI formatting instructions for the Conference Track. The submissions with 2 pages will be considered for the poster, while the submissions with at least 4 pages will be considered for the oral presentation.

IJCAI-MoL is a non-archival venue and there will be no published proceedings. The papers will be posted on the workshop website. It will be possible to submit to other conferences and journals both in parallel to and after IJCAI-MoL’19. Besides, we also welcome submissions to IJCAI-MoL that are under review at other conferences and workshops.

At least one author from each accepted paper must register for the workshop. Please see the IJCAI 2019 Website for information about accommodation and registration.

Preliminary list of invited speakers

The MoL workshop will feature on full-day events. We plan to invite 6 to 7 keynote speakers who are leading experts from both academia and industry. A list of keynote speakers includes:

Prof. Sinno Jialin Pan, Nanyang Technological University, Singapore (Confirmed)

Prof. Manik Varma, Microsoft Research India, and Adjunct Professor of computer science at the Indian Institute of Technology (IIT) Delhi (Confirmed)

Prof. Vladimir Pavlovic, Rutgers University, USA, and Samsung Electronics, UK (Confirmed)

Tentative Schedule

Time Event
08:30-08:45 Opening Ceremony
08:45-09:20 Keynote Talk 1
09:25-10:00 Keynote Talk 2
10:00-10:30 Coffee Break
10:30-12:00 Oral Presentations of Accepted Submissions
12:00-13:15 Lunch Break
13:15-13:50 Keynote Talk 3
13:55-14:30 Keynote Talk 4
14:30-15:30 Coffee Break & Poster Session of Contributed Works
15:30-16:05 Keynote Talk 5
16:05-16:40 Keynote Talk 6
16:40-17:15 Panel Discussion: Opportunities and Challenges for MoL
17:15-17:30 Award Ceremony & Closing Session

Important Dates

Submission Deadline: 05:00 PM (Pacific Time), May 16th, 2019

Acceptance Notifications: June 5th, 2019

Camera-ready: August 1st, 2019


Chen Gong, Nanjing University of Science and Technology, China.

Weiwei Liu, University of New South Wales, Australia.

Xiaobo Shen, Nanjing University of Science and Technology, China.

Joey Tianyi Zhou, IHPC, A*STAR, Singapore.

Yew-Soon Ong, Nanyang Technological University, Singapore.

Ivor W. Tsang, University of Technology Sydney, Australia.